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Notation and assumptions.

u € C?(Q) (may be relaxed to u € W3(Q));

(" is a conformal mesh consisting of simplexes;

N 1s a fixed number of simplexes.

Definition. 9" is the optimal mesh if

Q" —arg  min ||u— PhUHLOO(Q).
Qh:#T:NT

Existence. If ||u — P"ul|1__(q) is (a) continuous functional of the nodes
coordinates and (b) non-increasing functional for the case of nested grids, then the

optimal triangulation consisting of N simplexes exists.

u € C2%(Q) and P" is the piece-wise linear interpolation operator, i.e.
P? = Pqn.
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Quasi-optimal meshes (1/4)

Let G be a constant metric defined on a simplex A and h* be a real positive
number.

W Quality of a triangle A in metric G is defined by

_ Ale 0A|g
Qa,n+(A) = 12V/3 oAl F\ e

where

W Quality of a tetrahedron A in metric G is defined by

Ala |00A|c
(A = @4 2|—F bbbl LSA0 I
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Quasi-optimal meshes (2/4)

Function F(z).




Quasi-optimal meshes (3/4)

The quality of triangulation 2" consisting of Ny simplexes in metric G(z) is

Qa,n. (") = min Qane(B)

where Ga = G(arg meai( detG(x))

and
4|2 12(€2
h* — | |G B* — 3 | |G in 3D |
V3N7 V2Nr

(P. Zavattieri, E. Dari, and G. Buscaglia,1996)

Definition. Triangulation Q" consisting of N simplexes is called quasi-optimal
(with respect to u) 1f

Q|H|,NT (Qh) > QO) QO — 0(1)7

where H 1s the Hessian (matrix of second derivatives) of .

W Existence of a QOM depends on the value of ().

USNCCMO03, Albuquergue, July 27-31 -



Quasi-optimal meshes (4/4)

h

Quasi-optimal mesh Q" is an approximation to the optimal mesh Qopt-

LetdetH(x) #0 Va € and
[Hps = HapsllLo(a) < qlAi(Ha)|,  0<¢<1/2

forall A € Q’gpt and A € Q" where the maximal error is attained. Then

|u — Porullr, (o) < C(Qo, q)|lu — PﬂgptuHLoo(Q)-
Both the optimal mesh and quasi-optimal meshes satisfy:

1|1
Nt

9|1
Nt

C1(Qo; q) (in 2D),

< ||lu — Paru||r (@) < C2(Qo,q)

Q|
N

2/3 |QMH| 2/3
) < [lu—Parul|z_ () < C2(Qo, q) ( ) (in 3D)

C1(Qo,q) ( Ny
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Mesh adaptation algorithm

Initialization Step. Generate an initial triangulation 2. Choose the final mesh

quality (0o, Qo < 1, and the final number Nt of mesh elements.

Iterative Step.

1.
2.

Compute the discrete solution P« for triangulation Q.

Recover the discrete Hessian H” from P"u.
Stop iterations if Qg | N, (%) > Qo.

Generate the next mesh Q" such that Q| 1r ), Ny Q") > Q.

Set Q" = Q" and go to 1.

“ convergence analysis of the iterative step can be found in
Comput. Math. Math. Phys., V.39, No.9, 1999, pp.1468—-1468.
East-West Journal, V.7, No.4, pp.223-244.
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Parallel mesh adaptation (1/4)

Assumptions.

1. Each processor may keep the global mesh.
2. Parallel computer has a few processors.

3. A mesh can be easily distributed among processors and gathered back.

mesh with 10° tets require about 34M of processor memory
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Algorithm of generation of | H"|-QOM.

Initialization Step. Processor root computes and broadcasts the discrete Hessian H” to other
processors. Set k = 1. Processor root computes three orthogonal directions, bg, k = 1, 2, 3,
of the inertia tensor of Q.

Decomposition Step (kK < 4). Processor root extracts mesh elements such that Q| Hh? | B> (A) < Qo

and their neighbors. The extracted mesh is colored slice-wise (_L b ) and broadcasted to other
Processors.

Decomposition Step (k = 4). Processor root extracts the mesh elements whose vertices were fixed
for K = 1,2, 3. All the extracted mesh elements are assigned to the processor root.

Generation Step. Processor p extracts the p-th subgrid and tries to construct a | H ™*|-quasi-optimal
mesh. The boundary triangles shared by any two subgrids are not modified.

Gathering Step. Processor root gathers the subgrids and builds a conforming global grid Qr. We
stop if Q|Hh|,NT (QM) > Qq; otherwise, we set k := k + 1, Q" = Q" and go to
Decomposition Step.
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Parallel mesh adaptation (3/4)

Decomposition steps for the case of 2 processors:
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To construct a | H"|-quasi-optimal mesh we generate a sequence of grids

Qb Qb Qn

lrna,x

such that

Qyrrny Np () < Qurny ng () < oo < Qi v ().

Take the worst simplex with its neighbors.

Try to apply one of admissible mesh modifications (add a point, swap face
to edge, delete a point, move a point) to increase Q| z»| N, QM.

If all operations fail, we add the simplex to a list of failed simplexes. If the
list is too big, all failed simplexes are released.
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Numerical experiments (1/8)

1

02w O2u
0 =0 in Q=(0,1)2
31:% + B:L'% H (0, 1)

1 T T T T 1

08| 1 st u(a:) - (m1—0.5)2—('\/ma:2+0-2)2
 ((£1—0.5)24(1/1025+0.2)2)2

0.6 - 0.6 -

0.4 4 o4t

0.2 - 0.2

Qb Qh Qh Qh

Qm, | Ny (QF) ~ 0.1 || optimal | Qg N, =1 | PLTMG nodes
#Tr 600 608 569 686
Emax 0.216 0.065 0.167 0.404
Emean 0.067 0.037 0.063 0.086
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Numerical experiments (2/8)

2D experiment: compressible irrotational isotropic adiabatic flow of an ideal gas

around a wing.
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Numerical experiments (3/8)
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Numerical experiments (4/8)

3D experiment: point and anisotropic edge singularities.

~Au = f in Q=(0,1°\]0,0.5°
u = 0 on Of)
1
r) = ————, x9=1(0.9,0.5,0.5
f@) = g m=( )

3D experiment: anisotropic boundary layers.

—10_2Au+§7u = 1 in Q=(0,1)°\[0,0.5]° x (0,1)
1
u = 0 on Of)
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Numerical experiments (5/8)

Adaptive grid for the 1st problem.
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Numerical experiments (6/8)

Quasi-optimal mesh for the 2nd problem colored by solution values.

1.33

S

= 1.05

.75
n.f

.45

" Maximal aspect ratio of tetrahedra is about 100.
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Mesh refinement:
#T 9735 19359 36134 52079 160944
Problem 1: e = |lu—unlloo || 0.025 0017 0.0095 0.0066 0.0024
- #T2/3 11.3 12.2 10.3 9.1 7.0
#T 9531 18798 36175 70344 140392
Problem 2: g = ||u — up, ||C>o 0.057 0.031 0.022 0.016 0.010
- #T2/3 25.5 21.8 23.9 27.1 26.8
Convergence of adaptive iterations:
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Numerical experiments (8/8)

Number of mesh modifications and speed-up.

#T ~ 160000.
p=1 p =2 p=4 p=3_8
L #mod | #mod spd | #mod spd | #mod  spd
1 30403 | 16204 1.8 8752 3.4 5484 4.2
2 30850 | 18273 1.5 | 12340 2.7 6937 3.7
10 32986 | 13776 2.9 4996 7.5 1445 12.2
#T ~ 140000.
L p=2 p=4 p=8§
1 1.9 4.2 7.8
10 3.6 9.0 15
20 3.4 10.7 26.6
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There are a few theoretical results for algorithms of generation of
quasi-optimal meshes.

Simple 1D (slice-wise) domain decomposition 1s acceptable for parallel

computers with a small number of processors.

The most expensive stage of the parallel algorithm is the generation of

quasi-optimal subgrids. Communications expenses are negligent.

The parallel mesh generation may result in super liner speed-up.
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Conclusions

® There are a few theoretical results for algorithms of generation of
quasi-optimal meshes.

@ Simple 1D (slice-wise) domain decomposition is acceptable for parallel
computers with a small number of processors.

™ The most expensive stage of the parallel algorithm is the generation of
quasi-optimal subgrids. Communications expenses are negligent.

® The parallel mesh generation may result in super liner speed-up.

2D and 3D FORTRAN codes are available for research purposes.
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